首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1889篇
  免费   61篇
  2022年   3篇
  2021年   14篇
  2020年   8篇
  2019年   11篇
  2018年   16篇
  2017年   21篇
  2016年   24篇
  2015年   47篇
  2014年   68篇
  2013年   124篇
  2012年   89篇
  2011年   96篇
  2010年   59篇
  2009年   76篇
  2008年   123篇
  2007年   104篇
  2006年   123篇
  2005年   98篇
  2004年   103篇
  2003年   137篇
  2002年   141篇
  2001年   18篇
  2000年   33篇
  1999年   46篇
  1998年   45篇
  1997年   35篇
  1996年   28篇
  1995年   19篇
  1994年   29篇
  1993年   21篇
  1992年   22篇
  1991年   27篇
  1990年   16篇
  1989年   9篇
  1988年   14篇
  1987年   9篇
  1986年   9篇
  1985年   8篇
  1984年   14篇
  1983年   5篇
  1982年   11篇
  1981年   7篇
  1980年   4篇
  1979年   5篇
  1978年   4篇
  1976年   4篇
  1975年   4篇
  1972年   3篇
  1966年   2篇
  1964年   2篇
排序方式: 共有1950条查询结果,搜索用时 20 毫秒
71.
A treatment of buckwheat α-glucosidase with N-acetylimidazole brought about the acétylation of 6.4 tyrosyl residues, 0.38 free sulfhydryl groups and about 50% of free amino groups, and the decrease in the hydrolytic activities toward maltooligosaccharides (G2~G8, G13) and soluble starch. The affinities for the substrate other than maltose were diminished by the modification and the extent of the reduction of the affinities was apparently dependent on the degree of polymerization of maltooligosaccharides, while the affinity for phenyl α- maltoside was increased. The treatment of the acetylated enzyme with hydroxylamine resulted in the complete restration of the affinities for all substrates tested. It seems that these facts were due to the acétylation of several tyrosyl residues located in or near certain subsites of the enzyme. About 25 % of the hydrolytic activity remained inert in spite of the deacetylation with hydroxylamine, which was assumed to be attributed to the partial modification of free sulfhydryl group localized closely near the catalytic site of the enzyme.  相似文献   
72.
73.
Screening test for obtaining growth stimulant (GS) produced by a hydrocarbon-utilizing bacterium, Pseudomonas aeruginosa S7B1, was carried out. In consequence, the anthrone positive substance was most effective on the growth of this strain. Although the growth of this strain on glucose medium had no relation with the addition of GS, the growth on n-hexadecane medium was remarkably stimulated by the addition of GS. This effect of GS seemed to be specific on the growth of P. aeruginosa. GS which had a strong surface activity and emulsifying power was comfirmed to be rhamnolipid.  相似文献   
74.
75.
The establishment of human induced pluripotent stem cells (hiPSCs) has enabled the production of in vitro, patient-specific cell models of human disease. In vitro recreation of disease pathology from patient-derived hiPSCs depends on efficient differentiation protocols producing relevant adult cell types. However, myogenic differentiation of hiPSCs has faced obstacles, namely, low efficiency and/or poor reproducibility. Here, we report the rapid, efficient, and reproducible differentiation of hiPSCs into mature myocytes. We demonstrated that inducible expression of myogenic differentiation1 (MYOD1) in immature hiPSCs for at least 5 days drives cells along the myogenic lineage, with efficiencies reaching 70–90%. Myogenic differentiation driven by MYOD1 occurred even in immature, almost completely undifferentiated hiPSCs, without mesodermal transition. Myocytes induced in this manner reach maturity within 2 weeks of differentiation as assessed by marker gene expression and functional properties, including in vitro and in vivo cell fusion and twitching in response to electrical stimulation. Miyoshi Myopathy (MM) is a congenital distal myopathy caused by defective muscle membrane repair due to mutations in DYSFERLIN. Using our induced differentiation technique, we successfully recreated the pathological condition of MM in vitro, demonstrating defective membrane repair in hiPSC-derived myotubes from an MM patient and phenotypic rescue by expression of full-length DYSFERLIN (DYSF). These findings not only facilitate the pathological investigation of MM, but could potentially be applied in modeling of other human muscular diseases by using patient-derived hiPSCs.  相似文献   
76.

Background and Purpose

The major obstacles to treatment of pancreatic cancer are the highly invasive capacity and resistance to chemo- and radiotherapy. Glycogen synthase kinase 3β (GSK3β) regulates multiple cellular pathways and is implicated in various diseases including cancer. Here we investigate a pathological role for GSK3β in the invasive and treatment resistant phenotype of pancreatic cancer.

Methods

Pancreatic cancer cells were examined for GSK3β expression, phosphorylation and activity using Western blotting and in vitro kinase assay. The effects of GSK3β inhibition on cancer cell survival, proliferation, invasive ability and susceptibility to gemcitabine and radiation were examined following treatment with a pharmacological inhibitor or by RNA interference. Effects of GSK3β inhibition on cancer cell xenografts were also examined.

Results

Pancreatic cancer cells showed higher expression and activity of GSK3β than non-neoplastic cells, which were associated with changes in its differential phosphorylation. Inhibition of GSK3β significantly reduced the proliferation and survival of cancer cells, sensitized them to gemcitabine and ionizing radiation, and attenuated their migration and invasion. These effects were associated with decreases in cyclin D1 expression and Rb phosphorylation. Inhibition of GSK3β also altered the subcellular localization of Rac1 and F-actin and the cellular microarchitecture, including lamellipodia. Coincident with these changes were the reduced secretion of matrix metalloproteinase-2 (MMP-2) and decreased phosphorylation of focal adhesion kinase (FAK). The effects of GSK3β inhibition on tumor invasion, susceptibility to gemcitabine, MMP-2 expression and FAK phosphorylation were observed in tumor xenografts.

Conclusion

The targeting of GSK3β represents an effective strategy to overcome the dual challenges of invasiveness and treatment resistance in pancreatic cancer.  相似文献   
77.
Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs.  相似文献   
78.
Male sterility induced by low temperatures (LTs) during the reproductive stage is a major constraint for temperate zone rice. To detect physiological quantitative trait loci (QTLs), we modeled genotypic variation in the physiological processes involved in low temperature spikelet sterility on the basis of anther length (AL), a proxy for microspore and pollen grain number per anther. The model accounted for 83% of the genotypic variation in potential AL at normal temperature and the ability to maintain AL at LT. We tested the model on 208 recombinant inbred lines of cold‐tolerant ‘Tohoku‐PL3’ (PL3) × cold‐sensitive ‘Akihikari’ (AH) for 2 years. QTLs for spikelet fertility (FRT) at LT were detected on chromosomes 5 (QTL for Cold Tolerance at Reproductive stage, qCTR5) and 12 (qCTR12). qCTR12 was annotated with the ability to maintain AL under LTs. qCTR5 was in a region shared with QTLs for culm length and heading date. Genome‐wide expression analysis showed 798 genes differentially expressed in the spikelets between the parents at LTs. Of these, 12 were near qCTR5 and 23 were near qCTR12. Gene expression analysis confirmed two candidate genes for qCTR5 (O‐methyltransferase ZRP4, Os05g0515600; beta‐1,3‐glucanase‐like protein, Os05g0535100) and one for qCTR12 (conserved hypothetical protein, Os12g0550600). Nucleotide polymorphisms (21 deletions, 2 insertions and 10 single nucleotide polymorphisms) in PL3 were found near the candidate conserved hypothetical protein (Os12g0550600) and upstream in PL3, but not in AH. Haplotype analysis revealed that this gene came from ‘Kuchum’. The combination of mapping physiological QTLs with gene expression analysis can be extended to identify other genes for abiotic stress response in cereals.  相似文献   
79.
The aureolysin (Aur) gene of S. warneri M (aurWM) was cloned and sequenced. Analyses of the aurWM-inactivated mutant (S. warneri Mau) suggested that AurWM was probably associated with efficient processing of the PROM protease (homolog of V8/SspA serine protease), whereas considerable amount of mature-PROC protease (homolog of SspB cysteine protease) accumulated without AurWM. Additionally, AurWM appeared to affect biofilm formation in an uncertain suppressive way.  相似文献   
80.
Medaka (Oryzias latipes) is a small freshwater teleost that provides an excellent developmental genetic model complementary to zebrafish. Our recent mutagenesis screening using medaka identified headfish (hdf) which is characterized by the absence of trunk and tail structures with nearly normal head including the midbrain-hindbrain boundary (MHB). Positional-candidate cloning revealed that the hdf mutation causes a functionally null form of Fgfr1. The fgfr1hdf is thus the first fgf receptor mutant in fish. Although FGF signaling has been implicated in mesoderm induction, mesoderm is induced normally in the fgfr1hdf mutant, but subsequently, mutant embryos fail to maintain the mesoderm, leading to defects in mesoderm derivatives, especially in trunk and tail. Furthermore, we found that morpholino knockdown of medaka fgf8 resulted in a phenotype identical to the fgfr1hdf mutant, suggesting that like its mouse counterpart, Fgf8 is a major ligand for Fgfr1 in medaka early embryogenesis. Intriguingly, Fgf8 and Fgfr1 in zebrafish are also suggested to form a major ligand-receptor pair, but their function is much diverged, as the zebrafish fgfr1 morphant and zebrafish fgf8 mutant acerebellar (ace) only fail to develop the MHB, but develop nearly unaffected trunk and tail. These results provide evidence that teleost fish have evolved divergent functions of Fgf8-Fgfr1 while maintaining the ligand-receptor relationships. Comparative analysis using different fish is thus invaluable for shedding light on evolutionary diversification of gene function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号